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1. Introduction

n the context of generalized hypergeometric orthogonal polynomials Cohl applied in [1, (2.1)] a series
m rearrangement technique which produces a generalization of the generating function for the Gegenbauer
polynomials. We have since demonstrated that this technique is valid for a larger class of hypergeometric
orthogonal polynomials. For instance, in [2] we applied this same technique to the Jacobi polynomials, and
in [3], we extended this technique to many generating functions for the Jacobi, Gegenbauer, Laguerre, and
Wilson polynomials.

The series rearrangement technique combines a connection relation with a generating function, resulting
in a series with multiple sums. The order of summations are then rearranged and the result often simplifies
to produce a generalized generating function whose coefficients are given in terms of generalized or basic
hypergeometric functions. This technique is especially productive when using connection relations with one
extra free parameter, since the relation is most often a product of shifted factorials (Pochhammer symbols) and
g-shifted factorials (§-Pochhammer symbols).

Basic hypergeometric orthogonal polynomials with more than one extra free parameter, such the
Askey-Wilson polynomials, have multi-parameter connection relations. These connection relations are
in general given by single or multiple summation expressions. For the Askey-Wilson polynomials, the
connection relation with four extra free parameters is given as a basic double hypergeometric series. The
fact that the four extra free parameter connection coefficient for the Askey-Wilson polynomials is given by
a double sum was known to Askey and Wilson as far back as 1985 (see [4, p. 444]). When our series
rearrangement technique is applied to cases with more than one extra free parameter, the resulting coefficients
of the generalized generating function are rarely given in terms of a basic hypergeometric series. The more
general problem of generalized generating functions with more than one extra free parameter requires the
theory of multiple basic hypergeometric series and is not treated in this paper.

In this paper, we apply this technique to generalize generating functions for basic hypergeometric
orthogonal polynomials in the g-analog of the Askey scheme [5, Chapter 14]. In §2, we give some
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preliminary material which is used in the remainder of the paper. In §3, we present generalizations of the
continuous g-ultraspherical/Rogers polynomials. In §4, we present generalizations of the little g-Laguerre
polynomials. In §5, we present generalizations of the g-Laguerre polynomials. In §6, we have also
computed new definite integrals, infinite series, and Jackson integrals (hereafter g-integrals) corresponding
to our generalized generating function expansions using orthogonality for the studied basic hypergeometric
orthogonal polynomials.

Note that one important class of hypergeometric orthogonal polynomial generating functions which does
not seem amenable to our series rearrangement technique are bilinear generating functions. The existence of
an extra orthogonal polynomial in the generating function, produces multiple summation expressions via the
introduction of connection relations for one or both of the polynomials with the sums being formidable to
evaluate in closed form.

2. Preliminaries

Define Ny := {0} UN := {0} U{1,2,3,...}. Throughout the paper, we will adopt the following notation
to indicate sequential positive and negative elements, in a list of elements, namely

+a:= {a,—a}.

If &+ appears in an expression, but not in a list, it is to be treated as normal. In order to obtain our derived
identities, we rely on properties of the g-shifted factorial. The shifted factorial and g-shifted factorial are
defined for all n € Ny, a € C such that

(a)o:=1, (a),:=(a)(a+1)---(a+n—-1), ncN,
(@q)o:=1, (a;q)n:=(1—a)(l—aq)-- (1—-ag"""), neN. (1)

Note (a), :=T(a+b)/T(a) foralla,b € C,a+b ¢ —Ny. Also define
(@;9)0 == [](1 —aq"), 2)
n=0

where 0 < |g| < 1, a € C. We will also use the common notational product conventions

(a1, .- ar)p = (a1)p -+~ (ak)p,
(a1, ..., 09)p := (a1;9)p - -~ (4 9)ps

where a1, ay, ..., a5, b € C. We define the g-factorial as [6, (1.2.44)]

with g € C, g # 1. Note that [n],! = (4;9)./(1 —q)".
The following properties for the g-shifted factorial can be found in [5, (1.8.7), (1.8.10-11), (1.8.14), (1.8.19),
(1.8.21-22)], namely for appropriate values of 2 and 1, k € Ny,

(@ %) = (_ai)nq@(a;q’l)n, 3)

(@ @ pik = (@9)k(aq;9)n = (;9)n(ag"; 9)x, 4)

(ag";q)k = EZ q;: (ag";q)n, (5)
—n —n /3;q)n

(a0 ") = g kmw)k, ©)

(a;9)2n = (a,a0;9%) 0 = (£v/a, £/q8;9), @)
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(”2;‘72)11 = (£a;9)n. ®)
Observe that by using (1), (7) and (8), we get

(£Va, £/aq:9)n  (a;9)2n

aq’; = ) )
WO e @
Lemmal. Letg,a,p € C,0 < |q| <1. Then
(7% 9)p
= (a)g. 10
gt1- (1—q)P ()¢ 10

Proof. See [7, Lemma 2.2]. O

We also take advantage of the g-binomial [5, (1.11.1)] and binomial [5, (1.5.1)] theorems, a € C, |z| < 1,

respectively |g| < 1,
a az;q )oo
1<P0<_;6],Z>= ( 'q) ,

1F0<i;q,z> =(1-2z)"

The basic hypergeometric series, which we will often use, is defined for |z| < 1,0 < |gq] < 1, 5,7 € Ny,
al,b]» eC, b] g —Np, l,] €Ny, 0< I<r,0< ] <s,as [5, (1.10.1)]

ai, ..., ar = (a1, a9k kT k
;0,2 ) = —— = ((—1)"g"2 z". 11
s (bl, b 1E ) ];)(q,bl,...,bs;q)k ((-14) (1)

where we have used (2), and

Note that [5, p. 15]

o0 k
e g Tas—r )_ (al,...,a,_ )__ (ay,...,a0) 2
lim ;q,(g—1 z| = ,F ;z | = —_— 12
g1 (P < qbe q(q ) s bl,...,bs kgo(blr--'/bs)kk! ( )
where . F; is the generalized hypergeometric series [8, Chapter 16].
Let us prove some inequalities that we will later use.
Lemma2. Letje N, k,n € No,ze€ C,Ru >0,v>0,and 0 < |q| < 1. Then
|(a";9);] = (1= laD[Rulq||(4:9);1l, (13)
(9" 9)n < w1
<|lm+17, (14)
‘ (@ )n !
v+k/ l])n [n + 1]g+1 (15)
@ 5| = | TRw),

Proof. See [7, Lemma 2.3]. O

For a family of orthogonal polynomials (P,(x;a)), where a, b, are sets of free parameters, define a,(a),
ckn(a;b) as follows. A generating function for these orthogonal polynomials is defined as

e}

f(x,t,a) Z a)P,(x;a)t

and a connection relation for these orthogonal polynomials is defined as

Py(x;a) = i ckn(a;b)Pr(x;b).
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3. The continuous g-ultraspherical/Rogers polynomials

The continuous g-ultraspherical /Rogers polynomials are defined as [5, (14.10.17)]

n _in —”"B
G Bln) = (£ oy ( ;1 o

By starting with generating functions for the continuous g-ultraspherical/Rogers polynomials [5,

4, qﬂ_le_2i9> p x = cos .

(14.10.27-33)], we derive generalizations using the connection relation for these polynomials, namely [4,
(13.3.1)]

N BN 7 i 2")7"([%7 LB 0)nr ,
C”(xlﬁlq) - 1_,)/ k:ZO ( q)k( )n ' Cn 2k(x/'7’|q)~ (16)

Theorem 1. Let x € [—1,1],0 < |B], |7], lg] < 1, [tB|(1 — |q])* < 1 — |B|*. Then

, 2if )
<te-lf’;q>mz¢1<ﬁ'ﬁe g te ) 5 Ead DB

B = (nBEDn

7L 0
X 25 (Wnﬂ i‘Bﬁqn/Z‘Biﬁq ni1)/2 749 v(Bt)*4? H) . (17)

Proof. A generating function for continuous g-ultraspherical/Rogers polynomials can be found in [5,
(14.10.29)]

. 2i0 . ® 4@ (—pt)"
(te ) 201 (5?5 0 feﬁ) - L gy, b a9

Start with (18), inserting (16), shifting the n index by 2k, reversing the order of summation and using (4)

through (11), and by noting
n+ 2k n k
("5 = (5) +4(5) + @1k

Define
/ f wR X; ;B|q> x, (19)
V1—x2
where wg : (—1,1) — [0, c0) is the weight function defined by
219 2
(i) = |t )

Moreover, since ([5, (14.10.18]) |Cy(x; B|9)| < Ki[n + 1]°1, then
[{w, Cu (x; Bl9)Cr(x; Blq)) | < Ki[n+ 17,

and

K>
(1 g

(B%q)n(1—B)
(:q9)n(1— Bg")

[(w, Ca(x; B1q)Ca(x; Blg)) | = ’

N | [R(20)]g[R(b)],
[2]S+2n+l

where qb = B, so

(u, Cu(x; Blg)Cr (xﬁlq)>‘ 71[
(u,Cu(x; B|9)Cn(x;Bl9)) | — Ko

lan| < (JtB]/(1 — |IB\2))” Therefore

n+1)%1 (1~ |q])*"

|Ck,n| =

[n/2]

= K & (1 |q))>|t"|BJ? 30141
Z |an| Z ekl ICk(x; Blq)] K*Z (1—1|B?)" (n+1)17" < oo,
n=0 k=0
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and the result follows. [

Corollary 2. Let x € [-1,1], |t| <1, 8,7 € (—1,00) \ {0,1},0 < |q| < 1. Then

. — .(xz—l)tz o (B)at" B—v,B+n ﬁ
et°F1</5+2’ 4 )_,;0(%2@ Ca(x)aFs <7+n+1ﬁ+zrﬁ+”“'4>' @b

Proof. In (17), transform B ~ gP, v + 7, t = (1 — q)t, and take the limit as g 1 1~. Using the definition of
the g-exponential function [5, (1.14.2)] E4(z) := (—2;q)eo, limgy1- Eg((1 — q)z) = €%, and that the 2¢; becomes
a Kummer confluent hypergeometric functions {F; with argument —2itsinf. Representing this as a Bessel
function of the first kind using [8, (10.16.5)], and then using [8, (10.2.2)], the left-hand side follows. The g + 1~
limit on the right-hand side is straightforward. O

Theorem 3. Let x € [—1,1], |t{(1 — |g])> < 1—|B|?> 0 < |Bl, 7], 9] < 1. Then

_ B pet. e-it | v (Bt" - gy, 4",0,0,0,0 2 22
T 002471( g e ng;)(%/ﬂz;q)n n(719) 695 ) wpgt g ) 22)

Proof. A generating function for the continuous g-ultraspherical/Rogers polynomials can be found in [5,

(14.10.28)]
1 B Be* o\ & Calx;Blg) [3|‘1)
<tef9;q>oo2"’1< g ot )‘2 (B0 *

The proof follows as above by starting with (23), inserting (16), shifting the n index by 2k, reversing the order
of summation and using (4) through (11). O

Remark 1. The g 1 17 limit of (22) can also be shown to be the same as (21), by using the transformation
x — —x. The proof of this is the same as the proof of Corollary 2, except instead use the definition of the
g-exponential function [5, (1.14.1)] e(z) := 1/(2; 9)co, limyy - €4((1 — q)z) = €. Of course, the same is true for
the g T 17 limits of the original generating functions [5, (14.10.28-29)], which both are analogues of [5, (9.8.31)],
and are equivalent under the transformation x — —x.

Theorem 4. Let x € [—1,1], [t|(1 — |g])> < 1,0 < ||, 7], 19| < 1. Then
(1t )0 (7, B, > o
(teie;q)oo 32 ﬁZ telt ;4. te

3 ﬁ V9 B/ Bq", (g2, £ (vt ): o
Z tx ‘BZ C”(x “‘Q) 6Ps aqn+1 :|:,3£]n/2 iﬁq(n+l)/2 g et (24)
n=0 7 7

Proof. A generating function for the continuous g-ultraspherical/Rogers polynomials can be found in [5,
(14.10.33)]

(1t q)eo o (BB o) 5> (1)

(teie;q)w 3¢2 52 te i60 /q't r;) (‘32 ) (x ‘B|q) (25)

where v € C. Substitute (16) into the generating function (25), reverse the order of summation as above, shift
the n index by 2k, using (4) through (11), completes the proof. [

Theorem 5. Let x € [~1,1], (1 — [q)*(1 + [/glIBD|t] < (1 —qllBl), 0 < [Bl, 7], q] < 1. Then
1.0 71, 1a—if ; ® (B, + %,. e
21 (iﬁ_ﬁe g te 9) 2 ( (qﬁ)ﬁe ;q/tee> ZEan(xwlq)

o BYTL B (B ), (B E) R, (B 2) 2, i(Bg"
1099 yq”“,iﬁq”/z,iﬁq(”“)/z,iz(ﬁ n+1)%, l(‘Bqn-i-Z)%

NIwW

)2 ;q,’yt2>. (26)
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Proof. A generating function for the continuous g-ultraspherical/Rogers polynomials can be found in [5,
(14.10.31)]

201 (iﬁ_ fﬁe . te_m) 291 <i(qf )q Zﬁe_ie a, te“’) - g(;fméﬁq;’;n Ca(x; Blg) . 27)

We substitute (16) into the generating function (27), switch the order of the summation, shift the # index by 2k
and using (4) through (11), produces

1+ | val |B)" 1"
lanl < Ks = B

[n+1]7
Therefore the theorem holds. O

Theorem 6. Let x € [—1,1], (1—[q))>(1+ [BlvaD (1 + IBDIt] < (1= |v/allB) (X —1B*), 0 < Bl 7], ]a] < 1.

Then
(ﬁze"’ (9p)ze ,q’tem) 2¢1<—ﬁzef, %(qﬁ) ,q,tem) § BBt
i

Bq? Pa =0 (7, B2 B2 q)n

n } nt1y} 1 Ligantdd
Xw%(m B, ()2, ()2, i(Bg 2) 2, £i(Bg" ) ;q,,yla)_ 8)

B, B, /2, (), (g )

Proof. We start with the generating function for the continuous g-ultraspherical/Rogers polynomials [5,
(14.10.30)]

pre”, (ap)ze t_m) <—ﬁ%e—f9,—<qﬂ>%e-”. ti9> = (B =BT D (g (09
201 ( b g, te™ ) 2r 5} iq,te n;() TR Cu(x; Blg)t". (29)

Using the connection relation (16) in (29), reversing the orders of the summation, shifting the n index by 2k,
and using (4) through (11), obtains the result

] < A+ IAllvaD" (L + D" 1"
T A= -lvallelt

Therefore the theorem holds. O
Theorem 7. Let x € [—1,1], (1 |g])*(1 + |B])[¢] < (1 —[/4lIB]), 0 < Bl, 7, 9] < 1. Then

pre”, —(gp)2e” ~e> ((qm%ef@, —pie '9) SC
¢ | g, te | 2¢ 1 iq,te” ) = ——Cu(x:71q)
’ 1( —Bq2 s —Pg? :;)(vfﬁzf—ﬁqf;q)n

-1 n i n % i n+1 % n+% % n+% %
xlo%(m (B Hi(Ba")2, (B2, 4 (B 2) 2, (g >;W2>. (30)

3.1

yq"t, £Bg"2, £ N/2, i (B )3, (BT R

Proof. A generating function for the continuous g-ultraspherical/Rogers polynomials can be found in [5,
(14.10.32)]

% ) -0 _ 1 —if ) o (_ z.

Similar to the proof of (28), we substitute (16) into the generating function (31), switch the order of the
summation, shift the n sum by 2k, and use (4) through (11), obtaining the result

(1+ )"

Jaul < K4( T Tale"

[ +1]%

Therefore the theorem holds.
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4. The little g-Laguerre/Wall polynomials
The little g-Laguerre/Wall polynomials are defined as [5, (14.20.1)]

oy e [(TT0 _ 1 gt x
pn(x;alq) .—2¢1< aq IMX>—(Q P z¢o< . ,q,a).

The connection relation for little g-Laguerre/Wall polynomials can be obtained by Exercise 1.33 in [6] and
using the specialization formula which connects the little g-Laguerre/Wall polynomials with the little g-Jacobi
polynomials, namely [5, p. 521] p,(x;a|q) = pn(x;a,0|q).

Theorem 8. Let 0 < |aq|,|bq|, |q| < 1. Then the connection relation for the little q-Laguerre/Wall polynomials is given
by

7’!

X, a
pa(x;alg) = qaq ;

g D) (—a)n=i (", b ) (bg " /a3 q) -
(4:9)

p;(x; blq). (32)

By starting with the generating function for the little g-Laguerre/Wall polynomials [5, (14.20.11)], we
derive generalizations using the connection relation for these polynomials.

Theorem 9. Let 0 < |aq|, |bgql, |q| < 1, |t| < min{(1 —¢)(1 —aq)/a,1}. Then

£q)oo - © ) (—t)"(bg; a/b ;
((xt;qq))oo of (ﬂq ;q'aw> - Bq(qfq)n)(a(q;qq)qn) (bl 1 ( age1 10 Ht) ' >

Proof. We start with the generating function for little g-Laguerre/Wall polynomials found in [5, (14.20.11)]

(xt;q)co0 = (T

Using the connection relation (32) in (34), reversing the orders of the summations, shifting the n index by j,
and using (4) through (11), obtains the desired result since |a,| = [t["*/(1 —q)", |c, x| < Kg[n +1]%, and

: _ ® (_1)ng()

[pn(x;alg)] < la*[n +1]7/(1 — |ag])" < a"(n+1)7 /(1 —aq)", (35)

where 0y and 07 are independent of n implies
(<) n
Y lanl Y- leknllpe(x;alg)] < co.

n=0 k=0

Therefore the theorem holds. U

5. The g-Laguerre polynomials
The g-Laguerre polynomials are defined as [5, (14.21.1)]

oc+1; " —n i 1 7n,_x e
L;(;X)(x}q) = (q(q,q)z)l(l)l (;ﬂtJrl 9, —q + +1x> = (q q) Z(Pl < 0 9,9 * +l> .

Theorem 10. Let «, f € (—1,00),0 < |q| < 1. The connection relation for the g-Laguerre polynomials is given as

L(‘X) (.’X,

Z )12 (I ) (P ), L (ﬁ)(x q). (36)

Proof. One could obtain the above result by following an analogous proof as applied to the little
g-Laguerre/Wall polynomials. Nevertheless the result follows by using the relation between the little
g-Laguerre/Wall and the g-Laguerre polynomials [5, p. 521]. O
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By starting with generating functions for the g-Laguerre polynomials [5, (14.21.14-16)], we derive
generalizations of these generating functions using the connection relation for g-Laguerre polynomials (36).
Note however that the generating function for the g-Laguerre polynomials [5, (14.21.13)] remains unchanged
when one applies the connection relation (36).

Theorem 11. Leta,f € (—1,0),0 < |q| < 1, |t| < (1 —g*T1)(1 —q). Then

1 = ) > ()L (x;q) “=$,0
(t.q) O(Pl <qa+1 ;q’_th +l> = 20 (qa+l.nq) Z(Pl Zvc+n+l ’q' . (37)
1Y )oo n= 'Y)n

Proof. We start with the generating function for g-Laguerre polynomials found in [5, (14.21.14)]

o (&)
1 - 1 L (x;q)
et (g ) = B G @)
Using the connection relation (36) in (38), reversing the orders of the summations, shifting the n index by j,
and using (4) through (11), obtains the desired result since |a,| < [t|"/(1 — ”‘+1)” leni| < Koln + 1)p-atd
and

LY ()| < I+ 10/ (1=0)", (39)

implies

S £

o0 n
(@) (... 0

E a cenllLy 7 (x;9)| < K n-+1)% < oco.

n:0| n|k§0| k, || k ( q)| 9%(1_qrx+l)n(l_q)n( )

Therefore the theorem holds. O

Theorem 12. Leta,f € (—1,0),0 < |g| < 1, |t| < (1 —g*T1)(1 —q). Then

) N e by ®LP s
(t, 4)00 O(PZ a+1 + /q/ _xtq i = 2 ( q )pcf]. - ( q) 1(P1 Z+n+] /q/ tq . (40)
g, =0 (@ )n q

Proof. We start with the generating function for the g-Laguerre polynomials found in [5, (14.21.15)]

— d ()
(1) 002 ( -y ;q,xtq““) = ¥ i L ) )

Using the connection relation (36) in (41), reversing the orders of the summations, shifting the n index by j,
and using (4) through (11), obtains the desired result since, again, |a,| < [t["/(1 —¢**1)". O

Theorem 13. Leta,f € (—1,00), v € C,0< |g| <1, |t| <1—gq. Then

£ q)oo > 5 ) (t a—pyn IX*,B/ n
((Z.q‘g) 192 <q,x+a1y ot —xtqﬁl) =) b (IZ)H(l 79;7),1 ) LP) (%) 291 <qqa+ﬂ 4 t) . (42)
7 o] 7 n=0 4

Proof. We start with the generating function for the g-Laguerre polynomials found in [5, (14.21.15)]

t;q)c o - 7q)n n
<(’th§) 192 <qa+’1y ot 74, —xtq H) = Z‘E) (;a’):qu.)q) Ll(fé)(xr"ﬁt . (43)
7 [ee] 7 n= 7 n

Using the connection relation (36) in (43), reversing the orders of the summations, shifting the n index by j,
and using (4) through (11), obtains the result

1" [n + 1)+

<
jaa] < a+1

Therefore the theorem holds. [
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6. Definite integrals, infinite series, and g-integrals

Consider a sequence of orthogonal polynomials (py(x;«)) (over adomain A, with positive weight w(x; a))
associated with a linear functional u, where « is a set of fixed parameters. Define s, k € Ny by

57 ::/A{pk(x;tx)}zw(x;a)dx.

In order to justify interchange between a generalized generating function via connection relation and an
orthogonality relation for py, we show that the double sum/integral converges in the L2-sense with respect
to the weight w(x; «). This requires

o)

Y dist < oo, (44)
k=0

where

[e9)
dk = Z AnCi -
n=k

Here, a;, is the coefficient multiplying the orthogonal polynomial in the original generating function, and ¢y,
is the connection coefficient for pj (with appropriate set of parameters).

Lemma 3. Let u be a classical linear functional and let (pn(x)), n € Ny be the sequence of orthogonal polynomials
associated with w. If |pn (x)| < K(n+1)7+", with K, o and -y constants independent of n, then |s,,| < K(n+1)7v"|so|.

Proof. See [7, Lemma 6.1]. O

Given |pi(x; )| < K(k+ 1)K, with K, o and 7 constants independent of k, an orthogonality relation
for py, and |t| < 1/, one has Y7 o |au| Yi_g |cknsSk| < oo, which implies Y3 |dgsx| < oo. Therefore one
has confirmed (44), indicating that we are justified in reversing the order of our generalized sums and the
orthogonality relations under the above assumptions, which also are fulfilled for the polynomial families used
throughout this paper.

In this section one has integral representations, infinite series, and representations in terms of the
g-integral. In all the cases Lemma 3 can be applied and we are justified in interchanging the linear form
and the infinite sum.

6.1. Definite integrals

6.1.1. The continuous g-ultraspherical/Rogers polynomials

The property of orthogonality for continuous g-ultraspherical /Rogers polynomials found in [5, (3.10.16)]
is given by
(1= B) (BB D)o (B 9)n
Omn, (45)
(1= B7") (B 40 (g:0)n "

where the linear functional u is defined in (19), and wg (x; B|q) is defined in (20). We will use this orthogonality
relation for proofs of the following definite integrals.

(w, Con(x; Bl9) Cu(x; Blq)) = 270

Corollary 14. Letn € Ny, 8,7 € (=1,1)\ {0}, 0 < |q| < 1, |t| < 1 — B2 Then

1 ' 2i0 ‘ .
/71(te719;q)002¢1 ('B"Zg ;q,te“’) Cn(x;’YQ)wdx

(1) . 2. -1 pg.n
192 (7,97:9) (B, 7% 9)n By . Bq 2 ontl
=2m(—pt ;q, t . (46

A (P05 0)ea 0, B2, gm0 27 \ g1, g2, g 1)/2 T o

Proof. Using the generalized generating function (17) and the orthogonality relation (45), the proof follows as
above. [
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Corollary 15. Let n € Ny, B, v €

1 1 , 2if) » .
I A L =
n (197 9)e0(B 7% 9)n
= 2nt
O a0, B ) O (

-1, 1)\ {0},0< |g| <1, |t| <1— B2 Then

By~1,Bq",0,0,0,0 )

n n n 7 (47)
vg" 1, £Bg/2, £ pg(n+1)/2 9

Proof. Using the generalized generating function (22) and the orthogonality relation (45), the proof
follows. [

Corollary 16. Letn € No, vy € C, a, B € (
(e e (7. B P o wr (¥; &|q)
/—1W3¢ B2, yte? g te C(x; alq)——=—d

Vi@
B (“lq“;q)w(“ 0B ) ¢ <

—1,1)\{0},0< |q| <1, |t| < 1— B2 Then

X

1 1
B/a,Bq", £+ (v4")? £ (vg" )2 L 48
(02, 8:0)e0 (9, B2, 90:0)n ° >\ g1, £pg/2, £pglr+ /2 e )
Proof. Using the generalized generating function (24) and the orthogonality relation (45), the proof
follows. [

Corollary 17. Let n € Ny, B,y € (—1,1) \ {0}, 0 < |g] < 1, || < min{(1 — B*)(1 + /4|B|)(1 — q|v|), 1}. Then

! +pte® +(gB)re wg (% 7]9)
;q,te " q ;q,te ) Cu(x; 7)) —=tl d
/;1 2(P1 ( —ﬁ q € ) 24)1 < _qﬁ q € (x ’)’|‘7) m X
oo (0700 (72 B, 0% )
(Y% 4:0) (B2 —aB,97,9;9)n

By L Ba", £(Bg"t3) 2, £(Bg"T2), £i(Bg"TE)D, +i(Bg TR ) 2
X]_O(PQ 1 /2 1)/2 . 1 1 42 1 /q/')/t . (49)
g, £, £Bg /2 ki )2, +i(Bg" )2

Proof. Using the generalized generating function (26) and the orthogonality relation (45), the proof
follows. [J

Corollary 18. Let n € Ny, B,y € (—1,1) \ {0}, 0 < || < 1, || < min{(1 — B*)(1 + /4|B|)(1 — q|v|), 1}. Then

1 e, (q )ze —i0 —pre®, —(gp)re " L p0if 10y PR 7]9)
L ( b e )24’1< b e Gl g

dx
- Bg

1
e (10 9) o (7 B, — B2 )
1
(Y% 4:0) (B2 B42,97,9;9)n

By, Ba", £i(Bg")z, £i (B )2, +i( By +%>%,iz</sq"+ A
Xw@( g, B2, g/ (g gyt T ) )

Proof. Using the generalized generating function (28) and and the orthogonality relation (45), the proof
follows. [
Corollary 19. Letn € Ny B,y € (— \ {0},0 < |g] <1, [t| <min{(1— B?)(1+ ,/7|B]),1}. Then

! i, —(qp)ze? . (qB)2e —ﬁze i
/4 21 —ﬁq% g, te 21

; wg(x; v

27 (7,47;9) oo (V2 £ BB ) (
- 1
(Y% 4:0) (B2 —Ba2,97,9;9)n

101 ne3l
2)2, ( 2)2, 0 ’ytz
v, £Bg"?, iﬁq(”*l)/zfii(ﬁLI"+%)%, z(ﬁq’”%)%, )

(51)
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Proof. Using the generalized generating function (30) and and the orthogonality relation (45), the proof
follows. [

6.1.2. The g-Laguerre polynomials

The continuous orthogonality relation for the g-Laguerre polynomials is given by the following result.
Notice that this result appears in [9, Section 2].

Proposition 1. Let « € (—1,00), m,n € Ny, 0 < |q| < 1. Then

K. x+1.
7'[((/] /Q)w(q /q)nl ifﬂ(E (—1,00)\NOI
© (a) () x* Smn Sll’l(T[lX)(q,‘ q)oo(q,q)n
/ L (x; q)Ln (er)W dx = — rlt 52)
N e T | (@"iq)logg

qa(a+l)/2 , ifa € Np.

Proof. The continuous orthogonality relation for the g-Laguerre polynomials is given in [5, (14.21.2)] with the
right-hand side expressed in terms of gamma functions, namely

© @) g @) X" (07%9)e (@ )n
Ly, (x;9)L; " (x; dx = I'(—a)l (a4 1)y,
/o G )L q)(—x;q)oo q"(9;9) 0 (9;@)n (=e)r( )

The gamma functions can be replaced using the reflection formula [8, (5.5.3)] and the result is given in the
theorem for « € (—1,00) \ Ny. The result for « € Ny is a consequence of (3) and [10, cf. (2.9)], namely

("% —(@9)w(g9)k-110g9g
ok sin(e)(@g5 e 1q(2) (a;q)eo (0391

which leads to

—. . .
m 50w _ (3:9)w(4;9)klogq

a—k Sin(T(ﬁC) nqk(k+1)/2

Applying this limit completes the proof. [

Corollary 20. Letn € Ng, &, € (—1,00),0 < |g| < 1, [t| < (1 —g*t1)(1 — q). Then
/'OO ¢ - g —xtq‘”l L(ﬁ)(x.q)xiﬁ dx
Jo 01 th+1’ ’ n ’ (_x}q)oo

(7P D)oo (@ 9)
(t6°P)" (£:9)eo <qaﬁ,0 ) sin(7tB) (q; 7)oo (7;9)
1

qn (qa+1;q)n quc+n+l;q’t

s lfﬁ € (_1700) \NO/

1 (53)
(7" 9)plogyg .
W , if ‘B € Np.
Proof. Using the generalized generating function (37) and and the orthogonality relation (52), the proof
follows. [

Corollary 21. Letn € Ny, a, f € (—1,00),0 < |g| < 1, [t| < (1 —g*t1)(1 — q). Then

0o _ p
R A | B) (.. X
/0 0¢2(qzx+l,t’q’ th ) L” (x’q) (_x}q)oo dx

100 @ D e o (1 000\ N,
s P N\ | s (g el )n” ' '
- l]”(t'q) (th+1.q) 191 qa+n+1;q’ tq n+1 (54)
el n (9" q)plogyg
qﬁ(13+1)/2 ’

lfIB € Np.
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Proof. Using the generalized generating function (40) and and the orthogonality relation (52), the proof
follows. [

Corollary 22. Letn € Ny, a,p € (=1,00),v€ C,0< |g| <1, |t| <1—gq. Then

0 i
Tt ) (B, X
/0 14)2 <qa+1,7t1q/ .th ) Ln (X, LI) (_x; l/])oo dx
-B. B+1.
(3" q)e(q ,q>n,ifﬁe(_1lm)\Nol
— (1) G, (F, g () (@ 4)eo (1)
N M W S nt1 )
e (9" q)plogyg

FEN2 ifp & No.

Proof. Using the generalized generating function (42) and and the orthogonality relation (52), the proof
follows. [

6.2. Infinite series

6.2.1. The little g-Laguerre/Wall polynomials

The little g-Laguerre/Wall polynomials satisfy a discrete orthogonality relation, namely [5, (14.20.2)]

(ke kgl (20" (a0)"(3:9)n
k;]r)m(q, 9)pn(d5al0) 5 = Gt n (56)

fora € (0,1/9), with0 < |g| < 1.
Corollary 23. Let n € Ny, 0 < || <1, a,B € (0,471), [t| < min{(1 — B?)(1 + \/q|B|), 1}. Then

- k1) Pr (qk;ﬁm) _ ’7(;)(_‘1&)’1 a/p n41
<qw ot > @x  (LaBa)e(gaiq)n ' ¢1( w49/t > 7

N

q

Proof. We begin with the generalized generating function (33) and using the orthogonality relation (56)
completes the proof. O

6.2.2. The g-Laguerre polynomials
One type of discrete orthogonality that the g-Laguerre polynomials satisfy is [5, (14.21.3)]

) (a+1)k el —a . a+1.
@ ko Np@ kv 4 _(g=cq"", =97/ 9) (9" 9)n
E Ly, (cq*;q)L;, " (cq™; = Omn, (58)
e (e’ )L (e q)(*cq";q)oo (@, —c, =4/ )o@ )n

fora € (—=1,00),c > 0.

Corollary 24. Letn € Np, 0 < |q| < 1,&,B € (—1,00), [t| < (1 —g**1)(1 —q), ¢ > 0. Then

[e9)

Z opr (qt;-l 4, _tha+k+l) Lglﬁ) (qu;q)

k=—c0

q(ﬁ+1)k
(—cqk; 9) oo

_ (D) (b e g e g (R0 g
qn<qﬁ+1, —cC, _q/C?q)oo(q/anrl;q)n qﬂH”’H’l’ ’

Proof. We begin with the generalized generating function (37) and using the orthogonality relation (58)
completes the proof. [
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Corollary 25. Letn € Np, 0 < |q] <1, a,8 € (—1,00), (1—g*")(1—4q),c > 0. Then

[eo]

_ (B+1)k
q —ctg® k1) L (B) (k. q
k:;m °¢2<t7“+1/f'q’ th ) T e

_ () gD (0, —cgP T, g /) (3P ) ol T (60)
= qn(t,l]ﬁ+1, _c/_q/C;Q)m(q,q“+l;q)n 1 qvé+n+1’q’ q"|.

Proof. We begin with the generalized generating function (40) and using the orthogonality relation (58)
completes the proof. [

Corollary 26. Letn € Ny, 0 < |g] <1,a,8€ (=1,00),v€C, |t| <1—g,¢> 0. Then

o)

)3 1¢z(qaﬁ T q"‘*"“) L (cq;9)

k=—o0

q(5+1)k
(—cqq)eo

_ (4" )" (tg,—cgP T, =g P/ oo (7, 4P ) [T Py gt . (61)
qn('yt,q/g+1/—c,—q/c;q)oo(q,qwrl;q)n qﬂt+n+l 4,

Proof. We begin with the generalized generating function (42) and using the orthogonality relation (58)
completes the proof. [

6.3. The g-Integrals

6.3.1. The g-Laguerre polynomials
One type of orthogonality for the g-Laguerre polynomials is [5, (14.21.4)]

xt (1 - Q)(QI 7qa+1, 7q_a;Q)00(qa+l}Q)n
L (x; X; dox = Omn- (62)
/ DL q)( X Q)oo 20" (4* 1, =4, —4; 9) oo (4 ) e

Using this orthogonality relation we can obtain new g-integrals using our generalized generating functions for
the g-Laguerre polynomials.

Corollary 27. Letn € Ny, 0 < |q| < 1,&,B € (—1,00), |t| < (1 —g**1)(1 —q). Then
/°° ol "ot ) L () dox
0 o1 qa+1' ’ ’ (—x;q)oo q

_ -9 ()" (g " g @ e (PO (63)
= Zqﬂ(qﬁJrl,—q,—q;q)w(q,qwrl;q)n 21 quc+n+1’q' .

Proof. We begin with the generalized generating function (37) and using the orthogonality relation (62)
completes the proof. [

Corollary 28. Letn € Ny, 0 < |q| < 1,&,B € (—1,00), |t| < (1 —g**1)(1 —q). Then

p

h T g g LB (. X
,/()0¢2<q“+1,t'q' xtq ) (x’q)(—x;q)oo

_ (1—9q) (*tqzx—ﬁ)nq( (g, =P, —q7F; ) o (gPT 15 0)n - g b ). o
29" (t, B, —q, —3;9) 0 (9, 77159 getn1r

dgx

Proof. We begin with the generalized generating function (40) and using the orthogonality relation (62)
completes the proof. [
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Corollary 29. Letn € Ny, 0 < |q] <1, &, € (=1,00),v € C, |t| <1—gq. Then

) B
Y L a+1 B) (. x
/O l¢2 (6]“+1,')/t’ q, xtq > Ln (xr ‘1) (_x; q)oo dlix

(1—q) (4% F)" (3, — P+, —4F; 0)oo (1, 4P+ ) - t -
29" (7, 4PH, —4,—4;9)eo (0, 4* T ) S e A B

Proof. We begin with the generalized generating function (42) and using the orthogonality relation (62)
completes the proof. [
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