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ABSTRACT 
 

We have considered the variable heat and mass transfer boundary on an unsteady MHD flow 
through a loosely packed porous medium over an impulsively started vertical plate. The 
temperature of plate is made to rise linearly with time. The fluid considered is gray, absorbing-
emitting radiation but a non-scattering medium. The governing equations involved in the present 
analysis are solved by the Laplace-transform technique. The velocity, skin friction, Nusselt number 
and Sherwood number are obtained and computationally discussed for different governing 
parameters such as radiation parameter, Schmidt number, Thermal Grashof number, mass 
Grashof number, magnetic field parameter, porous parameter and Prandtl number with the 
combination of the other flow parameters are illustrated graphically, and physical aspects of the 
problem are discussed. 
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NOMENCLATURES 
 

  : Volumetric coefficient of thermal 

expansion 
 * : Volumetric coefficient of expansion with 

concentration 
  : Stefan–Boltzmann constant 
  : Density 

  : Dimensionless temperature 

  : Kinematic viscosity 
  : Coefficient of viscosity 

  : Dimensionless skin friction 

b  : Similarity parameter 
a* : Absorption coefficient 
A  : Constant 
B0 : External magnetic field 
C  : Species concentration in the fluid 

C  : Dimensionless concentration 

pC   : Specific heat at constant pressure 

Cw : Concentration of the fluid 

C
 : Concentration in the fluid far away from 

the plate 
D1 : Chemical molecular diffusivity 
erf : Error function 
erfc : Complementary error function 
g : Acceleration due to gravity 
Gm : Mass Grashof number 

Gr  : Thermal Grashof number 
D : Darcy parameter 
k : Thermal conductivity of the fluid 
M  : Magnetic field parameter 
Nu  : Dimensional Nusselt number 
Pr : Prandtl number 
qr : Radiative heat flux in the y direction 
R : Radiation parameter 
Sc  : Schmidt number 
Sh : Dimensional Sherwood number 
T  : Temperature of fluid near the plate 
t : Time 

t : Dimensional time 
Tw : Temperature of the fluid 

T         : Temperature of the fluid far away 

from  the plate 
u : Velocity of the fluid in the x - direction 
u0 : Velocity of the fluid 

u  : Dimensionless velocity 
y : Coordinate axis normal to the plate 

y  : Dimensionless coordinate axis          

normal to the plate 
 

SUBSCRIPTS 
 
w, 0 Conditions on the wall 
  Free stream conditions 

  
 

 

1. INTRODUCTION 
 
Many transport processes exist in nature and 
industrial applications in which the transfer of 
heat and mass occurs simultaneously as a result 
of combined buoyancy effects of thermal 
diffusion and diffusion of chemical species. In the 
last few decades several efforts have been made 
to solve the problems on heat and mass transfer 
in view of their application to astrophysics, 
geophysics and engineering. The study of MHD 
flow with heat and mass transfer plays an 
important role in biological Sciences. Effects of 
various parameters on human body can be 
studied and appropriate suggestions can be 
given to the persons working in hazardous areas 
having noticeable effects of magnetism and heat 
variation. Study of MHD flows also has many 
other important technological and geothermal 
applications. Major important applications are 
cooling of nuclear reactors, liquid metals fluid, 
power generation system and aero dynamics. 
The effects of radiation on free convection on the 
accelerated flow of a viscous incompressible fluid 

past an infinite vertical porous plate with suction 
has many important technological applications in 
the astrophysical, geophysical and engineering 
problem. Free convection effects on the 
oscillating flow past an infinite vertical porous 
plate with constant suction was studied by 
Soundalgekar [1] which was further improved by 
Vajravelu and Sastri [2]. Soundalgekar and 
Takhar [3] studied the MHD flow and heat 
transfer over a semi-infinite plate under the 
influence of uniform transverse magnetic field. 
Also Soundalgekar and Wavre [4] have studied 
unsteady free convection flow past an infinite 
vertical plate with variable suction and mass 
transfer. Soundalgekar and Takhar [5] have 
considered radiation effects on free convection 
flow past a semi-infinite vertical plate. Das et al. 
[6] have studied effects of mass transfer on flow 
past an impulsively started vertical infinite plate 
with constant heat flux and chemical reaction. 
Ezzat Magdey [7] has considered magneto hydro 
dynamic unsteady flow of non-Newtonian fluid 
past an infinite porous plate. Radiation and free 
convection flow past a moving plate was 
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considered by Raptis and Perdikis [8]. 
Muthucumara swamy et al. [9] analyzed 
theoretical solution of flow past an impulsively 
started vertical plate with variable temperature 
and mass diffusion. Jaiswal and Soundalgekar 
[10] have considered the oscillating plate 
temperature effects on a flow past an infinite 
porous plate with constant suction and 
embedded in a porous medium. Muthucumara 
swamy and Ganesan [11] have studied heat 
transfer effects on flow past an impulsively 
started semi-infinite vertical plate with uniform 
heat flux. Magyari et al. [12] have studied vertical 
flat plate embedded in a stably stratified fluid 
saturated porous medium. Prasad et al. [13] 
studied effects of heat and mass transfer on flow 
past an oscillating vertical plate with variable 
temperature. Muthucumara swamy et al. [14] 
studied unsteady flow past an accelerated infinite 
vertical plate with variable temperature and 
uniform mass diffusion. Toki [15] improved the 
analytical solutions for free convection and mass 
transfer flow near a moving vertical porous plate. 
Thermal radiation effect on a transient MHD flow 
with mass transfer past an impulsively fixed 
infinite vertical plate was studied by Ahmed and 
Sarmah [16]. Reddy and Reddy [17] investigated 
Soret and Dufour effects on steady MHD free 
convection flow past a semi-infinite moving 
vertical plate in a porous medium with viscous 
dissipation. Das [18] developed the closed form 
solutions for the unsteady MHD free convection 
flow with thermal radiation and mass transfer 
over a moving vertical plate. In this continuation, 
the effect of heat and mass transfer on unsteady 
MHD free convection flow past a moving vertical 
plate in a porous medium was investigated by 
Das and Jana [19]. Prasad et al. [20] discussed 
radiation and mass transfer effects on unsteady 
MHD free convection flow past a vertical porous 
plate embedded in a porous medium. Rajesh [21] 
have considered MHD effects on free convection 
and mass transform flow through a porous 
medium with variable temperature. Osman et al. 
[22] discussed the thermal radiation and 
chemical reaction effects on unsteady MHD free 
convection flow through a porous plate 
embedded in a porous medium with heat 
source/sink and the closed form solutions are 
obtained. Seth et al. [23] investigated the 
unsteady MHD natural convection flow with 
radiative heat transfer past an impulsively 
moving plate with ramped wall temperature. 
Srinivasacharya and Kaladhar [24] discussed the 
Soret and Dufour effects on the mixed 
convection heat and mass transfer along a semi-
infinite vertical plate embedded in a non-Darcy 

porous medium saturated with couple stress 
fluid. The combined effects of heat and mass 
transfer on free convection unsteady magneto 
hydrodynamic flow of viscous fluid embedded in 
a porous medium is discussed by Farhad Ali  et 
al. [25]. Rao and Krishna [26] discussed the 
combined effects of radiative heat transfer and a 
transverse magnetic field on steady rotating flow 
of an electrically conducting optically thin fluid 
through a porous medium in a parallel plate 
channel and non-uniform temperatures at the 
walls. Recently, unsteady flow of a viscous 
incompressible fluid past an exponentially 
accelerated moving vertical plate had been 
investigated by Ahmed et al. [27]. An unsteady 
hydro magnetic flow of a viscous incompressible 
electrically conducting fluid past an accelerated 
porous flat plate in the presence of a uniform 
transverse magnetic field in a rotating system 
taking the hall effects into account have been 
discussed by Das et al. [28]. The radiation effect 
on the thermo-magnetic convection which occurs 
in participating paramagnetic medium under 
microgravity condition is numerically investigated 
by Wang and Tan [29]. The thermal-diffusion and 
diffusion-thermo effects on heat and mass 
transfer by transient free convection flow of over 
an impulsively started isothermal vertical plate 
embedded in a saturated porous medium were 
numerically investigated by EL-Kabeir et al. [30]. 
Ramesh and Devakar [31] studied the influence 
of heat transfer on the peristaltic transport of an 
incompressible magneto hydro dynamic second 
grade fluid in vertical symmetric and asymmetric 
channels. Khamisah Jafer et al. [32] discussed 
the steady magnetohydrodynamic (MHD) laminar 
boundary layer flow of a viscous and 
incompressible electrically conducting fluid near 
the stagnation point on a horizontal stretching or 
shrinking surface, with variable surface 
temperature and a constant magnetic field 
applied normal to the surface of the sheet. Ali et 
al. [33] discussed the steady magneto 
hydrodynamic mixed convection boundary layer 
flow of an incompressible, viscous and 
electrically conducting fluid over a stretching 
vertical flat plate is theoretically investigated with 
Hall effects taken into account. The problem of 
laminar fluid flow which results from the 
simultaneous motions of a freestream and its 
bounding surface in the same direction has been 
investigated numerically by Abraham and 
Sparrow [34]. In this paper, we have considered 
radiation effects on MHD flow past an impulsively 
started vertical plate with variable heat and mass 
transfer boundary. The results are shown with 
the help of tables and graphs. 
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2. FORMULATION AND SOLUTION OF 

THE PROBLEM 
 
We consider the flow of unsteady viscous 
incompressible fluid through a porous medium 
past a vertical plate. The x- axis is taken along 
the plate in the upward direction and y-axis is 
taken normal to the plate. Initially the fluid and 
plate are at the same temperature. A transverse 
magnetic field B0 of uniform strength is applied 
normal to the plate as shown in Fig. 1. The 
viscous dissipation and induced magnetic field 
has been neglected due to its small effect. 
Initially, the fluid and plate are at the same 
temperature T  and concentration C  in the 

stationary condition. At time t >0, the plate is 
moving with a velocity u = u0 in its own plane and 
the temperature of the plate is raised to Tw and 
the concentration level near the plate is raised 
linearly with respect to time. 
 

 
 

Fig. 1. Physical configuration of the problem 

 
The unsteady equations of the MHD flow through 
porous medium are as: 
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The initial and boundary conditions 
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The local radiant for the case of an optically thin 
gray gas is expressed by 
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Considering the temperature difference within the 
flow is sufficiently small, 4T  can be expressed 
as the linear function. This is accomplished by 
expanding 4T  in a Taylor series about T and 

neglecting higher-order terms, thus 
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Using equations (7) and (8), equation (2) reduces 
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Introducing the following non- dimensional 
quantities: 
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Making use of non-dimensional variables, the 
equations (1), (2) and (9) leads to (dropping 
asterisks)
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With initial and boundary conditions 
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0 0 0u , , C , as y              (15)  
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The dimensionless governing equations (10) to 
(12), subject to the boundary conditions (13) to 
(15), are solved by the usual Laplace transform 
technique. With help of Hetnarski’s [35] has also 
been taken. The solutions derived are given 
below. Transforming equation (12) we get, 
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where A and B are arbitrary constants. 
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Using boundary conditions (13) and (14), it 
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equation (24), we obtain 
 

 2 2
1 2( ) ( ) ( )

2
Rt Rtt

y,t a e erfc Pr ct a e erfc Pr ct      

                 

(25) 
 

Similarly, again taking the Laplace transform to 
the equation (10) and making use of the initial 
and boundary conditions (13) to (15), it reduces 
to 
 

   
2

2

2
( ) ( ) ( )

d u 1
s M u y,s GrL y,t GmL C y,t

Ddy


  
       

  

         

   (26)           
 
The solution of the equation (26) is  
 

2 2

2 2
3 4

( )
1 1( ) ( )

R
y Pr s1 1

y sScy s M y s M Pr
D D Gr e Gm e

u y,s F e Ge
Pr Scs s a s s a

    
       

      
  

                     (27) 



 
 
 
 

Krishna; ACRI, 4(2): 1-13, 2016; Article no.ACRI.25971 
 
 

 
6 
 

Applying the boundary conditions (14) and (15) for (26), we obtain 
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The non-dimensional shear stress is given by 
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The non-dimensional Nusselt number is given by 

 

00 2

1

























d

d

tdy

d
Nu

y
                 

(31) 

 
The non-dimensional Sherwood number is given 
by 
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3. RESULTS AND DISCUSSION 
 

We discussed the exact analysis and are 
presented to investigate the combined effects of 
heat and mass transfer on the MHD flow of an 
incompressible viscous fluid bounded by loosely 
packed porous medium in an impulsively started 
vertical plate with variable heat and mass 
transfer. The expressions for the velocity, 
temperature and concentration are obtained by 
using Laplace transform technique and also 
discussed the physical behaviour of the 
dimensionless parameters such as Hartmann 
number M, Darcy parameter D (Permeability 
parameter), Radiation parameter R, thermal 
Grashoff number Gr, mass Grashoff number Gm, 
Prandtl number Pr and Schmidt number Sc. Figs. 
(2-12) have been displayed for the velocity, 
temperature and concentration. Skin friction, 
Nusselt number and Sherwood number are 
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shown in Tables 1-3. The velocity, temperature 
and concentration profiles for some realistic 
values of Prandtl number Pr (Pr = 0.71, 0.16, 3 
for the saturated liquid Freon at 273.3° and Pr = 
7 for water) and Schmidt number Sc (Sc = 0.2 for 
hydrogen) respectively. From Fig. 2, this 
presents the velocity profile for different values of 
M being other parameters fixed. We noticed that 
the velocity decreases with increasing the 
Hartmann number M. It is due to the fact that the 
application of transverse magnetic field results a 
resistive type force (Lorentz force) similar to drag 
force and upon increasing the intensity of the 
magnetic field which leads to the deceleration of 
the flow. Fig. 3 is sketched in order to explore the 
variations of permeability parameter D. It is found 
that the magnitude of the velocity increases with 
increasing the values of permeability parameter 
D. This is due to the fact that increasing the 
permeability reduces the drag force which assists 
the fluid considerably to move fast. Likewise the 
magnitude of the velocity u reduced continuously 
with increasing the radiation parameter R from 
Fig. 4. The variation of velocity for different 
values of dimensionless time t and Prandtl 
number Pr is shown in Figs. 5 and 6. It is noticed 
that velocity increases with increasing time t.                
It is also observed from the Fig. 6 that the 
magnitude of the velocity u decreases with 
increasing Prandtl number Pr. It is clear from        
Fig. 7, the velocity decreases with increasing the 
thermal Grashof number Gr (cooling plate), 
where as there sharp enhancement in velocity for 
heating the plate, this is increase sustains                
away from the plate. Fig. 8 reveals that the 
magnitude of the velocity increases with 
increasing mass Grashoff number Gm 
throughout the fluid region. Similarly the same 
phenomenon is observed with increasing 
Schmidt number Sc from Fig. 9. The effect of 
radiation parameter R on the temperature profile 
is shown in Fig. 10. It is found that the 
temperatures, being as decreasing function of R, 
decelerates the fluid flow and reduce the fluid 
velocity. Such an effect may also be expected, 
here as increasing radiation parameter R makes 
the fluid thick and ultimately causes the 
temperature and thermal boundary layer 
thickness to reduce. Hence it is observed that the 
temperature decreases with increasing the 
radiation parameter R throughout the fluid region. 
The Prandtl number actually describes the 
relationship between momentum diffusivity and 
thermal diffusivity and hence control the relative 
thickness of the momentum and thermal 
boundary layers. From Fig. 11, we observed that 
the temperature reduces with increasing the 

values of Prandtl number Pr, it is also observed 
that the thermal boundary layer thickness is 
maximum near the plate and reduces with 
increasing distances from leading edge and 
finally approaches to zero. It is also justified due 
to the fact that thermal conductivity of the fluid 
decreases with increasing Prandtl number Pr and 
hence decreases the thermal boundary layer and 
the temperature profile. Fig. 12 depicts the 
increasing values of Schmidt number Sc lead to 
fall the concentration profiles throughout the fluid.   
 

The numerical values of the skin friction (τ), 
Nusselt number (Nu) and Sherwood number (Sh) 
are computed and are tabulated in the                 
Tables 1-3, in all these tables the comparison of 
each parameter is made with first row in the 
corresponding Table. It found from Table (1), the 
effect of each parameter on the skin friction 
shows that, τ enhances with increasing R, D, Pr, 
Gr, Gm, Sc and time t, while decreases with M 
and –Gr. It is observed from Table (2) that 
Nusselt number Nu increases with increasing R, 
Pr and t. From Table 3 we observed that 
Sherwood number goes on increasing with 
increasing Sc and t. 
 
 

 
 

Fig. 2. The velocity profile for u against M 
with D=1; P= 0.71; t=0.1; Sc=2; R=1; Gr=5; 

Gm=10 
 

 

 
 

Fig. 3. The velocity Profile for u against D 
with   M=2; P= 0.71; t=0.1; Sc=2; R=1; Gr=5; 

Gm=10 
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Table 1. The effects of various parameters on skin friction (shear stress ( )) 
 

R M K Pr Gr Gm Sc t   

1 2 1 0.71 5 10 2 0.2 3.67042 
2 2 1 0.71 5 10 2 0.2 4.29354 
3 2 1 0.71 5 10 2 0.2 4.84244 
1 3 1 0.71 5 10 2 0.2 3.48338 
1 4 1 0.71 5 10 2 0.2 2.15628 
1 2 2 0.71 5 10 2 0.2 3.70531 
1 2 3 0.71 5 10 2 0.2 3.71552 
1 2 1 0.16 5 10 2 0.2 3.14544 
1 2 1 3 5 10 2 0.2 5.22357 
1 2 1 7 5 10 2 0.2 10.4094 
1 2 1 0.71 10 10 2 0.2 3.92357 
1 2 1 0.71 15 10 2 0.2 4.17671 
1 2 1 0.71 -10 10 2 0.2 2.91099 
1 2 1 0.71 -15 10 2 0.2 2.65785 
1 2 1 0.71 5 5 2 0.2 1.96178 
1 2 1 0.71 5 15 2 0.2 5.37906 
1 2 1 0.71 5 20 2 0.2 7.08770 
1 2 1 0.71 5 10 3 0.2 3.78256 
1 2 1 0.71 5 10 4 0.2 4.36933 
1 2 1 0.71 5 10 5 0.2 4.99703 
1 2 1 0.71 5 10 2 0.3 4.84466 
1 2 1 0.71 5 10 2 0.4 6.06165 
1 2 1 0.71 5 10 2 0.5 7.04960 

 

 Table 2. The effects of various parameters on 
the rate of heat transfer (Nu) 

 

R Pr t Nu 

1 0.71 0.1 0.195870 
2 0.71 0.1 0.216376 
3 0.71 0.1 0.235839 
4 0.71 0.1 0.254358 
1 0.16 0.1 0.107555 
1 3 0.1 0.634710 
1 7 0.1 1.393160 
1 0.71 0.2 0.331442 
1 0.71 0.3 0.461249 
1 0.71 0.4 0.588593 

 

 
 

Fig. 4. The velocity profile for u against R with 
D=1; P= 0.71; t=0.1; Sc=2; M=2; Gr=5; Gm=10 

Table 3. The effects of various parameters on 
the sherwood number (Sh) 

 

Sc t Sh 

2 0.1 0.104512 

3 0.1 0.226218 

4 0.1 0.356825 

5 0.1 0.493120 

2 0.2 0.147802 

2 0.3 0.181019 

2 0.4 0.209023 

2 0.5 0.233695 
 

 
 

Fig. 5. The velocity profile for u against Pr 
and t with M=2; D=1; t=0.1; Sc=2; R=1; Gr=5; 

Gm=10 



 
 
 
 

Krishna; ACRI, 4(2): 1-13, 2016; Article no.ACRI.25971 
 
 

 
9 
 

 
 

Fig. 6. The velocity profile for u against t with 
M=2; D=1; t=0.1; Sc=2; R=1; Gr=5; Gm=10 

 

 
 

Fig. 7. The velocity profile for u against Gr 
with M=2; D=1; P=0.71; Sc=2; R=1; t=0.1; 

Gm=10   
 

 
 

Fig. 8. The velocity profile for u against Gm 
with M=2; D=1; P=0.71, Sc=2; R=1; t=0.1; Gr=5 
 
 
 

 
 

Fig. 9. The velocity profile for u against Sc 
with M=2; D=1; P=0.71, R=1; t=0.1; Gr=5; 

Gm=10 
 

 
 
Fig. 10. The temperature profile for θ against 

R with P=0.71; t=0.1 

 

 
 

Fig. 11. The temperature profile for θ against 
Pr with R=2; t=0.1 
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Fig. 12. The concentration profile for C                        
against Sc with t=0.1 

 
4. CONCLUSIONS 
 
We have studied the unsteady MHD flow of an 
incompressible fluid through a loosely packed 
porous medium in an impulsively started vertical 
plate with variable heat and mass transfer. The 
conclusions are made as following. 
 

1. The velocity decreases with increasing the 
Hartmann number M. 

2. The magnitude of the velocity increases 
with increasing the values of permeability 
parameter D.  

3. The magnitude of the velocity u enhances 
and reduced continuously with increasing 
the radiation parameter R. 

4. The velocity increases with increasing time 
t. It is also observed that the magnitude of 
the velocity u decreases with increasing 
Prandtl number Pr.  

5. The velocity decreases with increasing the 
thermal Grashof number Gr (cooling plate), 
whereas there sharp enhancement in 
velocity for heating the plate, this is 
increase sustains away from the plate.  

6. The magnitude of the velocity increases 
with increasing mass Grashof number Gm 
throughout the fluid region. The same 
phenomenon is observed with increasing 
Schmidt number Sc. 

7. The temperature decreases with 
increasing the radiation parameter R or Pr. 

8. The increasing values of Schmidt number 
Sc lead to fall the concentration profiles 
throughout the fluid.   

9. The skin friction  enhances with increasing 
R, D, Pr, Gr, Gm, Sc and time t, while 
decreases with M and  –Gr. 

10. Nusselt number Nu increases with 
increasing R, Pr and t. 

11. Sherwood number Sh goes on increasing 
with increasing Sc and t. 
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